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Abstract
The interaction potential of two like-charged colloid spheres with nonuniform surface charge
distribution suspended in an electrolyte confined in a long charged cylinder wall is calculated in
this paper. Two models of boundary conditions on the cylinder wall are considered. One is the
fixed potential model, and the other is the fixed charge density model. The confinement makes a
quantitative or even qualitative change to the spheres’ interaction compared with the unconfined
system. A long-ranged attraction emerges in the confined system, though they are repulsive in
the unconfined system under the same other conditions.

1. Introduction

Colloidal solutions are widely applied in industrial processes,
in particular in biotechnology, food, pharmaceutical and
cosmetics industries because of their many special proper-
ties [1–6]. The electrostatic interaction of like-charged colloid
particles is one of the most important factors in determining the
essential properties of these colloidal solutions, and it was es-
tablished long ago under the approximation of mean field the-
ory, which predicted a Yukawa type screened repulsion [7, 8].
Yet an anomalous attraction between these particles was sug-
gested by Sogami et al [9, 10] in the 1980s and observed in
a series of experiments by Grier and other groups [11–18],
which ignited a long-lived controversy. Many theoretical inves-
tigations of this problem were made and different mechanisms
were proposed. However, it seems that different mechanisms
can explain different aspects of the experiments and a univer-
sally accepted explanation is still lacking [19–25]. It is most
noticeable that all the explanations of the anomalous attrac-
tion, such as the confinement effect of charged colloids [25],
the nonequilibrium hydrodynamic effect [19] and the existence
of a metastable ionized state [20], were proposed under one
basic assumption. The assumption is that the distribution of
charges on the surface of the colloid particles is uniform. How-
ever, as found by Tong’s group in their experiments [26, 27],
in general, charges distribute nonuniformly on colloid spheres
such as polystyrene (PS) latex spheres, which are often used

in experiments. A very profound attraction between such like-
charged colloidal spheres is observed experimentally when the
spheres are suspended on the water–air interface [26, 27]. The
observed attraction was of the order of several kBT , much big-
ger than that observed under the dispersion confinement condi-
tions by other groups [11–16], which was about 0.2 kBT . The
observations of nonuniform distribution of surface charges on
the colloid spheres and the profound attraction between these
spheres brought about the expectation that the distributions of
surface charges on the spheres may play a crucial role in the ef-
fective pairwise interaction of charged colloids. Additionally,
under the assumption of uniform distribution of surface charges
on colloid spheres, Sader et al [21] and Neu [22] had rigor-
ously proved that there could not be attractive interaction un-
der the Poisson–Boltzmann approximation. However, it is not
clear that this result should still be valid in the case of nonuni-
form distributions of surface charges on colloid spheres. With
these observations, we investigated the interaction between two
nonuniformly charged spherical particles immersed in an un-
bounded electrolyte [28], whose surface charge has the form

σ(θp, ψp) = σ0
[
1 + b0 cos θp

]
(1)

where σ0 denotes the average surface charge density and
b0 is an adjustable parameter characterizing the surface
heterogeneity. Uniform distribution of charges on the sphere’s
surface is a special case of this system with b0 = 0. In this
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Figure 1. Sketch of the system of two charged spheres in a
cylindrical confined polyelectrolyte.

investigation, a long-ranged (compared to the range of van
der Waals attraction) electrostatic attraction of two particles
emerged when b0 reached some large value such as b0 = 2 or
b0 = 3. Though the positive and negative charges coexist on
the sphere’s surface when b0 > 1, which is not directly related
to the real experiment situations, it is possible that the effective
dipolar moment of the colloid particles in real experiments can
reach larger values, which may equivalently be represented
by a parameter b0 which is larger than unity [26, 29]. The
transition of the interaction between particles from repulsion
to attraction with increasing nonuniformity of the distribution
of surface charges on the spheres indicated the possibility that
the anisotropy of surface charges can be one of the main
reasons to produce the anomalous attraction between like-
charged colloids.

In general, the distribution of charges on the surface of
colloid spheres can be written as σ = σ(θp, ψp), where θp

and ψp are the polar and rotational angles of the spherical
coordinates with the z p axis on the direction of the effective
dipolar moment and the origin of these coordinates is on
the center of the sphere. This surface charge density can
be expanded in terms of spherical harmonics, and can be
implemented in the theoretical treatment given in our previous
study [28] in a straightforward way for an unbounded system.
As an example, in the last part of the paper [28], we
also investigated two like-charged colloid particles with a
distribution of surface charges that expanded to the second
order of the spherical harmonics. The electrostatic interaction
of the two like-charged particles for this more general
distribution of surface charges was consistent with the one for
the simple distribution of equation (1).

In the present study, we extend our calculation to the
confined case and study the joint effects of the nonuniform
charge distribution and the confinement on the interaction
energy between the spheres. In the previous study [28], the
electrostatic potential was expressed as a series expansion
of spherical harmonics centered in either sphere by using
rotation–translation of coordinates. Using the orthogonality of
the basis functions, the expansion coefficients can be obtained
by solving a set of linear equations resulting from the boundary
conditions on the spheres surface. However, the method
fails to apply in the present case because of the complexity
introduced by the confinement boundary. The difficulty is
solved in this study by using the multipole expansion method
proposed in the context of the viscous fluid problem by
Gluckman and Weinbaum et al [30, 31]. Following the idea
of the multipole expansion method, we obtain the interaction

potentials between two charged spheres with nonuniform
distributions of surface charges confined in a long charged
cylinder wall.

The paper is organized as follows. In section 2, the basic
theory and computation method of the problem is described. A
comparison of the interaction potential between the confined
system and an unconfined one is given in section 3; other
aspects of the interaction are also discussed in this section.
Section 4 is the conclusion of the study.

2. The model and method

The model considered is a system of two identical charged
colloid spheres with radius a and dielectric constant εs ,
confined by a long charged cylinder wall. Three local
coordinate systems are used in the representation of the
electrostatic potential, which are set up to adhere to the spheres
and the cylinder respectively. The origins of these local
coordinate systems are at the centers of the spheres and the
cylinder respectively and their z-axes are parallel with the
cylinder axis. The charge distributions on the colloid spheres,
σ(θp, ψp), can be represented by the local coordinates of the
spheres from a rotation of coordinates,

σα(θα, ψα) = D̂(ζα, ξα, γα)σ (θp, ψp) α = 1, 2. (2)

Here, D̂(ζα, ξα, γα) is the rotation operator in which the
coordinate system is rotated from the coordinates whose z p-
axis is in the direction of the effective dipolar moment of the
sphere to the local coordinate system [32]. ζα , ξα and γα are the
three Eulerian angles of the rotation. For example, the surface
charge distribution of equation (1) can be written as

σα = σ0(1 + b0 cos θp)

= σ0
[
1 + b0

(
sin γα sin θα cos(ψα − ξα)+ cos γα cos θα

)]

α = 1, 2. (3)

Besides the local coordinates, we also set up a global
coordinate system, which coincides with the local cylindrical
coordinate system in this calculation. The local and global
coordinates are illustrated in figure 1.

For the sake of computational convenience, all the
quantities are represented in the nondimensional form. The
unit of length is the sphere’s radius, a, and the electrostatic
potential φ is expressed in dimensionless form as � =
eβφ. Here β = 1/kBT and kB, T , e and εe are the
Boltzmann constant, temperature, elementary charge and
dielectric constant of the electrolyte respectively.

Under the Poisson–Boltzmann approximation, the dimen-
sionless electrostatic potential in the electrolyte, �e = eβφe,
for a symmetric 1:1 electrolyte system satisfies

∇2�e(r) = 2Zc0λB

a
sinh (Z�e(r)) . (4)

Here λB = e2β/εe is the Bjerrum length, Z is the absolute
valence of the ions in the polyelectrolyte and c0 is the
dimensionless concentration (in units of 1/a3) of ions at the
reference point where �e(r) = 0. Since we are interested
in the effects of the nonuniform charge distribution and
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confinement on the colloid particles, we simplify our study
by considering the weak potential limit, in which the Poisson–
Boltzmann equation is linearized,

∇2�e − b2�e = 0. (5)

Here b = κa is the dimensionless Debye parameter, κ denotes
the Debye parameter and κ−1 is a measure of the screening
length of the electrostatic interaction, given by

κ =
√

2Z 2c0λB

a3
. (6)

The dimensionless potentials inside the two spheres, �(α)
s =

eβφ(α)s , satisfy the Laplace equation

∇2�(α)
s = 0, α = 1, 2. (7)

Following the idea of the multipole expansion method, the
potential in the electrolyte can be written as a sum of three
contributions from three objects, the charged cylinder wall and
the two charged spheres. Each part is a linear superposition
of the complete solutions of equation (5) which satisfy the
boundary conditions at infinity, written in accordance with the
respective local coordinates whose origins are placed at the
geometrical center of each object.

�e =
∑

t

∫
F(w, t)I|t|(

√
w2 + b2ρ)ei(wz+tψ)dw

+
∑

α=1,2

∑

lm

A(α)lm kl(brα)Ylm(cos θα, ψα). (8)

The first part of equation (8) denotes the potential due to the
charged cylinder wall and the second part is the potential due
to the two charged spherical particles. Here, I|t|(

√
w2 + b2ρ)

is defined as the |t|th order modified Bessel function of the first
kind, kl(brα) is the modified spherical Bessel function of the
second kind, Ylm(cos θα, ψα) denotes the spherical harmonics,
i = √−1 is the unit imaginary number and l, m and t
are integers with |t| and l ranging from 0 to ∞ and |m| �
l. Similarly, the potentials inside the two spheres can be
expressed by superpositions of basis functions with respect to
their local coordinates.

�(α)
s =

∑

lm

B(α)
lm r l

αYlm(cos θα, ψα), α = 1, 2. (9)

This kind of expansion was first studied in the context of
viscous fluid by Weinbaum et al as early as 1971 and each term
in the expansion subsequently named as a multipole. Similarly,
in our case each term of the series in equations (8) and (9)
can be viewed as the potential from the multipole and the
whole series called the multipole series. The strength of every
multipole is given by the coefficients A(α)l,m , B(α)

l,m and F(w, t).
These coefficients are determined by the boundary conditions
on the surfaces of the spheres and cylinder wall.

On the surfaces of the spheres the boundary conditions are
as follows:

�(α)
s (rα) = �e(rα), rα ∈ Sα (10)

(
τs∇�(α)

s (rα)− ∇�e(rα)
) · nα = �α rα ∈ Sα (11)

where Sα represents the surface of particle α, and nα is the
outer normal unit vector of surface Sα . �α is a dimensionless
surface charge density given by �α = σαaeβ/εe. τs = εs/εe

denotes the ratio of dielectric constant between the particle and
the solvent. On the surface of the cylinder wall, the boundary
conditions are related to the structure and the character of the
cylinder wall. In real experiments [11–16], glass is usually
selected as the charged wall to confine the colloid solution. As
a result, the confined boundary is too complex to be treated
precisely. To simplify the calculation, we consider here two
extreme situations: (a) constant surface potential model on the
surface of the cylinder wall; (b) constant surface charge density
model on the surface of the cylinder wall. We now give the
equations that are needed to solve for the unknown coefficients
A(α)l,m , B(α)

l,m and F(w, t) which appear in the electrostatic
potential in the equations (8) and (9) for these two cases of
model boundaries.

2.1. The case of constant surface potential on the surface of
the cylinder wall

In this model, since the potential on the surface of the cylinder
wall is uniform and remains fixed, we can set it to be zero. The
boundary condition on the cylinder wall then can be written as

�e(r) = 0, r ∈ Sc, (12)

where Sc denotes the surface of the cylinder wall. Substituting
condition (12) into equation (8) yields

∑

t

∫
F(w, t)I|t|(

√
w2 + b2h)ei(wz+tψ)dw

= −
∑

α=1,2

∑

l,m

A(α)l,m kl(brα)Yl,m(cos θα, ψα) rα ∈ Sc,

(13)

where h is the distance between the spheres and the cylinder
wall and r1 = √

h2 + (z + d)2, r2 = √
h2 + (z − d)2,

cos θ1 = (z + d)/
√

h2 + (z + d)2 and cos θ2 = (z −
d)/

√
h2 + (z − d)2. Equation (13) should be satisfied for any

points on the inner surface of the cylinder wall, which relates
the coefficient F(w, t) to the coefficients A(α)l,m . It is obvious
that the right-hand side of equation (13) is the two-dimensional
Fourier transform of F(w, t)I|t|(

√
w2 + b2h). Thus, the

coefficient F(w, t) can be expressed directly by coefficients
{A(α)l,m} through the inverse Fourier transformation:

F(w, t) = − 1

4π2 I|t|(
√
w2 + b2h)

×
∫ ∫ ∑

α=1,2

∑

l,m

A(α)l,m kl(brα)Yl,m(cos θα, ψα)

× e−i(wz+tψ)dz dψ = G(w, t, {A(1)l,m}, {A(2)l,m})
rα ∈ Sc. (14)

Substituting equations (8), (9) and (14) into the spheres’
boundary conditions (10) and (11), we obtain
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∑

l,m

[
B(α)

l,m Yl,m(cos θα, ψα)−
∑

α=1,2

A(α)l,mkl(b)Yl,m

× (cos θα, ψα)

]
−

∑

t

∫
G(w, t, {A(1)l,m}, {A(2)l,m})

× I|t|
(√
w2 + b2ρ

)
ei(wz+tψ)dw = 0,

rα ∈ Sα (15)
∑

l,m

[
τs B(α)

l,mlYl,m(cos θα, ψα)

−
∑

α=1,2

A(α)l,m

∂kl(brα)

∂rα

∣
∣∣
∣
rα=1

Yl,m(cos θα, ψα)

]

−
∑

t

∫
G(w, t, {A(1)l,m}, {A(2)l,m})

× ∂ I|t|(
√
w2 + b2ρ)ei(wz+tψ)

∂rα

∣
∣
∣
∣
rα=1

dw − �s = 0,

rα ∈ Sα (16)

where
ρ = rα sin θα,

z = r1 cos θ1 − d = r2 cos θ2 + d,

r1 =
√

r 2
2 + 4d2 + 4dr2 cos θ2,

r2 =
√

r 2
1 + 4d2 − 4dr1 cos θ1,

cos θ1 = (r2 cos θ2 + 2d)

/√
r 2

2 + 4d2 + 4dr2 cos θ2

and

cos θ2 = (r1 cos θ1 − 2d)

/√
r 2

1 + 4d2 − 4dr1 cos θ1

with the reduced center–center distance of spheres 2d . The key
point of the multipole expansion method is that the coefficients
A(α)l,m , B(α)

l,m are determined by substituting a discrete set of
points on the boundaries Sα into equations (15) and (16).
In the complete expansion, there are an infinite number of
coefficients to be determined, thus the expansion has to be
truncated at some value of lmax = N in numerical calculations.
In this case we are left with 4(N + 1)2 coefficients to be
determined; we then choose (N + 1)2 points on each sphere’s
surface and substitute the coordinates of the chosen points
into equations (15) and (16) to form a set of 4(N + 1)2

equations. It should be noted that all the coefficients are
complex numbers. For a special axial symmetry distribution
of surface charge on the sphere such as the distribution of
equation (1), when the directions of effective dipolar moments
of the two spheres are both on the cylinder axis, z, the
system is axially symmetric around z. Thus the potentials
are independent of the angle ψ and ψα , i.e. m = t =
0. As a result, the number of coefficients is reduced from
4(N + 1)2 to 4N . Then N points on the sphere’s generatrix
are enough to solve these coefficients. It is noticeable that,
here, due to the axial symmetry of the problem, each point
on the sphere’s generatrix denotes one circle on the sphere’s

surface. The set of equations is solved numerically to obtain
the required coefficients. Since the truncated equations are
approximations of the complete equations, different choices of
points on the boundaries may give different solutions of the
expansion coefficients. It is also possible that some sets of
points result in equations where the solution is not uniquely
determined. This kind of question is studied in the context
of viscous flow problems and some useful guidelines and
convergence analysis are available [30, 31]. In our calculation
we choose the points by guidance from viscous flow studies
and check the convergence by successive increase of the order
of truncation and by comparing the results from different sets
of points used in calculations. In real calculations, we find
that N decreases with increasing colloid–colloid distance and
N = 24 is enough to obtain an accurate potential at the
short distance of about 2d = 2.2 for an axial symmetry
system. The equations are solved by an iterative method.
First, for initial guess of the coefficients {A(α)l,m} and {B(α)

l,m},
F(w, t) is obtained from equation (14) through fast Fourier
transformation, then the results inserted into equations (15)
and (16) to form a set of linear equations for {Aαl,m} and {Bα

l,m},
which can easily be solved, and the results are used as input for
the next iteration. This simple iteration scheme converges to
the desired accuracy after six iterations for the axial symmetry
system; here, the accuracy was specified as a relative error of
the coefficients between iterations less than 10−7. We denote
the surface charge density on the cylinder surface as σc, then
the dimensionless charge density �c = σcaeβ/ε0 is given by

�c = ∇�e(r) · nc, r ∈ Sc. (17)

The electroneutral condition of the system is automatically
satisfied in this case and is checked in the numerical
calculation.

2.2. The case of constant surface charge density on the
surface of the cylinder wall

For the model of constant surface charge density on the
cylinder wall, there are similar conditions with equations (10)
and (11) on the surface of the cylinder wall,

�c(r) = �e(r), r ∈ Sc (18)

(∇�e(r)− τc∇�c(r)) · nc = �c r ∈ Sc. (19)

Here �c = eβφc denotes the dimensionless potential inside
the cylinder wall; τc = εc/εe is the dielectric constant ratio
between the cylinder wall and the fluid. Note that the potential
�c can only be determined when the structure and boundary
conditions of the cylinder wall are specified. For simplicity, we
assume that there are no free ions inside the wall and there is
no outer boundary of the wall, which implies that the potential
�c satisfies the Laplace equation and decays to zero at infinity.
Thus the potential �c can be expressed as

�c =
∑

t

∫
H (w, t)K|t|(|w|ρ)ei(wz+tψ)dw. (20)

Here, K|t|(|w|ρ) is the modified Bessel function of the second
kind and H (w, t) is the expansion coefficient to be determined
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Figure 2. The interaction energy of two spheres as a function of the reduced colloid–colloid distance with different boundary conditions on
the cylinder wall: fixed potential, − − −; fixed charge density, · · ·. Distribution of surface charge on the spheres: (a) b0 = 0 (uniform
distribution); (b) b0 = 1; (c) b0 = 1.7; (d) b0 = 3. In each subfigure, the head–head case is denoted by ◦, the tail–tail case is denoted by � and
the parallel case is denoted by �. For comparison, the bulk (unconfined) case is plotted as solid lines in each part of the figure.

by the boundary conditions (10), (11), (18) and (19). The
electroneutral condition of the system is satisfied automatically
when the conditions (10), (11), (18) and (19) are satisfied.

Substituting equation (20) and (8) into the two boundary
conditions (18) and (19) yields

∑

t

∫ [
H (w, t)K|t|(|w|h)− F(w, t)I|t|

(√
w2 + b2h

)]

× ei(wz+tψ)dw =
∑

α=1,2

∑

l,m

A(α)l,mkl(brα)Yl,m(cos θα, ψα),

rα ∈ Sc (21)
∑

t

∫ [
τc H (w, t)

∂K|t|(|w|ρ)
∂ρ

− F(w, t)
∂ I|t|(

√
w2 + b2ρ)

∂ρ

]

ρ=h

ei(wz+tψ)dw

=
∑

α=1,2

∑

l,m

A(α)l,m

∂[kl(brα)Yl,m(cos θα, ψα)]
∂ρ

∣
∣
∣
∣
ρ=h

−�c,

rα ∈ Sc. (22)

Here,

r1 =
√
ρ2 + (z + d)2,

r2 =
√
ρ2 + (z − d)2,

cos θ1 = (z + d)/
√
ρ2 + (z + d)2

and
cos θ2 = (z − d)/

√
ρ2 + (z − d)2.

Similarly, the right-hand sides of equations (21) and (22) are
Fourier transforms of the left-hand sides of (21) and (22),
respectively. After inverse Fourier transforms, F(w, t) and
H (w, t) can be expressed in terms of {A(α)l,m}, α = 1, 2

F(w, t) = G1(w, t, {A(1)l,m}, {A(2)l,m}) (23)

H (w, t) = G2(w, t, {A(1)l,m}, {A(2)l,m}). (24)

Substituting equation (23) into the potential in the elec-
trolyte �e and using the sphere boundary conditions (10)
and (11), we obtain similar equations to (15) and (16) when
G(w, t, {A(1)l,m}, {A(2)l,m}) is replaced with G1(w, t, {A(1)l,m}, {A(2)l,m}).
The equations can be truncated and solved numerically with
the same method as used in the case of the constant potential
model.

3. The interaction potential between two spheres

Under the linear approximation, once the potential is obtained,
the interaction energy between the two spheres can be written

5
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as a sum of surface integrals over each sphere and cylinder
wall [28]:

β� = a

2λB

[
∑

α=1,2

∫
dSα�e�α +

∫
dSc�e�c

]

− βW0,

(25)
where βW0 is a constant energy due to the Coulomb potential
of the system when the center–center distance of the two
spheres tends to infinity. In fact, we never mention the concrete
form of the surface charge distribution of spheres throughout
section 2 and equation (25). That means that the theories in
section 2 and equation (25) are valid for any distribution of
charges on the sphere’s surface.

The interaction energy in equation (25) is for a given
configuration of the two spheres. In real experiments, however,
colloid spheres can rotate due to thermal agitations; an
instantaneous interaction potential obtained for a specified
configuration of the two colloid spheres does not represent the
experimentally measured one. In order to get experimentally
comparable results, we have to calculate the potentials for
all the possible orientations and average the results with a
Boltzmann factor, which requires a large number of numerical
calculations, and the task is formidable. Additionally, since
the distribution of the surface charges on the particles can be
expanded in terms of spherical harmonics and we here are
only interested in the effect of charge nonuniformity on the
effective interaction of two like-charged colloid particles, we
can simplify our model and consider a simple distribution of
surface charge on the spheres with equation (1) [28]. We also
assume the directions of the effective dipolar moments of two
spheres are parallel or antiparallel to the axis of the cylinder,
z. In this way the problem is reduced to a two-dimensional
problem. Though the situation we consider here is a special
one, it can already illuminate the problems we are investigating
in some way.

Some parameters in our calculations are characterized in
table 1. Here we select average surface charge density σ0 =
25.5 μC m−2, i.e., the value of total charge Q = 500, which
is lower than the cases of experiment setups [11–16, 26, 27].
The choice of the small total charge in our calculation is
simply because of the linear approximation requirement of
weak potential. In fact, when the number of charges on the
spheres reaches some high value, it will renormalize [33] and
the full nonlinear theory has to be used in the calculation.
Figure 2 shows the results of the interaction potential between
two like-charged colloid spheres as a function of the reduced
colloid–colloid distance of the two spheres, 2d , with four
different nonuniform distributions of surface charges on the
spheres, corresponding to the parameters b0 = 0, b0 = 1,
b0 = 1.7 and b0 = 3 respectively. In order to specify the
configurations of the spheres, we first define the head and tail of
a colloid sphere as the two poles with maximum and minimum
charge densities respectively; then the three cases we studied
are (a) head–head antiparallel, in which the two heads of the
two spheres are directed to each other, (b) tail–tail antiparallel,
in which the two tails of the two spheres are directed to each
other, and (c) parallel, in which both the spheres are in the same
direction.
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Interaction energy
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Interaction energy
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Interaction energy
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(d)
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2d

2

1

0

βΩ

4 6
2d 2d

4 6
2d

3 4

0

-4

Figure 3. The interaction energy of two spheres as a function of the
colloid–colloid distance with different sphere–wall separations h:
h = 2.0, �; h = 2.13, ◦; h = 2.5, �; h = 10.0, �. The boundary
conditions on the cylinder wall are the following: fixed potential,
− − −; fixed surface charge density σc = 0.2σ0, · · ·; unconfined
system, —. The charge distributions on the spheres are (a) b0 = 0;
(b) b0 = 1; (c) b0 = 1.7; (d) b0 = 2. Here the curves for the case of
the unconfined system and h = 10 for both the fixed potential model
and the fixed charge density model superpose each other.

From figure 2, we see that the interaction between two
spheres in the head–head case is always repulsive. The tail-
tail case is also repulsive, and the repulsion is weaker than
both the head–head and parallel cases when b0 is small, and
turns into the second when b0 is increased close to 1.7. The
most interesting case is the parallel case, which is repulsive at
small b0 and turns to attractive when the anisotropy parameter
b0 increases. The transition from the repulsion to attraction
is due to the interaction of effective dipoles arising from
anisotropy of surface charges on the spheres’ surfaces. In
general, the interaction energy between two spheres is the
result of the competition of the attractive interaction between
effective dipoles and repulsion between two effective charges
if the contributions of higher multipoles are neglected. For the
surface charge distribution of equation (1), the effective dipolar
moment is 4

3 b0πa3σ0, which increases with b0.
The confinement on the spheres also modifies the

interaction energy. In figure 2, we see that the spheres
are more repulsive or less attractive at short colloid–colloid
distance for the unconfined case than for the case of the model
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Figure 4. The interaction energy of two spheres as a function of colloid–colloid distance with different values of c0: c0 = 80.0, corresponding
to κ−1 = 0.423 μm, —; c0 = 120.0, corresponding to κ−1 = 0.234 μm, · · ·. Distribution of surface charges on the spheres: b0 = 0, �;
b0 = 1, �; b0 = 2, ◦; b0 = 3, �. Boundary conditions on the cylinder: (a) fixed surface charge density; (b) fixed potential.

Table 1. Some parameters selected in our calculations; here ε0 is the vacuum dielectric constant.

T τs τc εe a σ0 σc Z κ−1 h

300 K 0.0625 0.075 80ε0 0.5 μm 25.5 μC m−2 0.2σ0 1 0.423 μm 2.13

of fixed potential on the cylinder wall, while they are less
repulsive or more attractive than for the case of the model
of fixed surface charge density on the cylinder wall. This
phenomenon implies that the electrostatic repulsion is more
effectively screened by the electrolyte for the fixed potential
model than that for the unconfined system, while the fixed
surface charge density model is just the opposite. In the
case of b0 = 1.7 for the parallel configuration case seen in
figure 2(c), the confinement of the cylinder wall with fixed
potential produces an attraction between two spheres, while
these spheres are purely repulsive in the unconfined system.
This significant change between the unconfined system and
confined system for the spheres’ interaction indicates that the
confinement on the charged colloid particles might also be one
of the important reasons to induce the attraction between two
like-charged particles.

A comparison of interaction energies for the parallel case
with various sphere–wall separations, h, is shown in figure 3.
In the case of the fixed potential model, the interaction energy
increases when h increases for the four different distributions
of surface charges on the spheres, b0 = 0, b0 = 1, b0 = 1.7
and b0 = 2, and with the increasing of h, the interaction
tends to the bulk case denoted by solid lines (superposed with
the curves of h = 10 and barely distinguishable), which
gives a consistency check of our calculations. In the case
of the constant charge density model, the situation is just the
opposite: the interaction energy is decreasing at the short
colloid–colloid distance when h increases. Similarly, the
interaction tends to the bulk case as h increases. It is most
noticeable that the reduction of the sphere–wall separation also
qualitatively changes the interaction for both b0 = 1.7 and
b0 = 2 in figures 3(c) and (d). Under the confinement of
a charged cylinder wall whose potential is fixed, a minimum
consistent with a long-ranged attraction emerges for the case of
b0 = 1.7 with the reduction of h, while for the case of b0 = 2

the minimum vanishes as h decreases under the confinement of
a charged cylinder wall whose surface charges are fixed.

Figure 4 shows the results of interaction energies of two
spheres with different relative concentrations of ions c0 at
�e = 0 as a function of the colloid–colloid separation 2d . The
interaction between two spheres tends to zero more quickly
as c0 increases whether for the fixed potential model or the
fixed charge density model. This is a trivial result since the
Debye screening length is in inverse proportion to c1/2

0 , as can
be seen in equation (6). The interesting result here is that two
repulsive spheres become attractive with the enhancement of
c0 for the case of b0 = 2 in the fixed surface charge density
model seen in figure 4(a). Additionally, in the case of the fixed
charge density model, the density of charges on the cylinder
surface, σc, is also one of the important parameters directly
affecting the interaction energy. Figure 5 represents the effect
of different σc on the interaction energies for the four different
surface charge distributions on the spheres. From this figure,
we see that the effective charge repulsion is more effectively
screened with decreasing σc. Some qualitative changes of the
spheres’ interaction also occur for b0 = 2 as the σc decreases.

4. Conclusion

In summary, we have investigated a system of two
nonuniformly like-charged colloid spheres suspended in an
electrolyte confined in a long charged cylinder wall. Two kinds
of boundary conditions on the surface of cylinder wall are
considered in this system: one is the constant potential model
and the other is the constant surface charge density model.
Compared with the unconfined system, the confinement
quantitatively and even qualitatively changes the interaction
between two charged spheres under the approximation of
linear Poisson–Boltzmann theory. A long-ranged attraction
between two like-charged spheres emerges in the confined
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Figure 5. The interaction energy of spheres as a function of the sphere center–center distance for the fixed charge density model with different
values of charge densities on the cylinder wall: σc = −0.2σ0, �; σc = 0, ◦; σc = 0.2σs, �. Distribution of surface charges on the spheres:
(a) b0 = 2; (b) b0 = 0, —; b0 = 1, · · ·; b0 = 3, − − −.

system, though it is repulsive in the unconfined system of the
same other environment parameters as given in table 1. This
phenomenon suggests that the confinement of spheres is also
one of the important reasons to induce a long-ranged attraction.
Under the confinement of a long charged cylinder wall, the
sphere–wall separation, the density of surface charges on the
cylinder wall and the ion concentration in the electrolyte also
significantly affect the spheres’ interaction.
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